Evaluation and Management of Scapular Dysfunction

Angela Tate PT, PhD, Cert MDT
Brian Eckenrode PT, DPT, OCS

Goals of this presentation

- Relevance of scapular dysfunction to common shoulder pathologies
- Normal scapular motion & function
- Key examination techniques to identify scapular dysfunction
- Key treatment concepts and techniques to address scapular dysfunction

Why all the fuss about the scapula?

- Is it a direct source of symptoms?
 - Rarely
 - Scapular pain: think *cervical spine* first

Scapular Dysfunction

The Big Picture

- "Scapular Dysfunction"
 - Something not working correctly
 - Medical Diagnosis or Physical Impairment?

Scapular Dysfunction

The Big Picture

- Medical diagnosis
 - RC tendinopathy/tear, instability, SLAP, frozen shoulder
 - helps direct general course of care and prognosis
 - does not dictate specific rehab
- As therapists, we treat *physical impairments*
 - identified through an examination
 - *Assumption*: improving impairments (strength, ROM, motor control, posture etc) => ↓pain & ↑function
- Identified impairments dictate specific rehab

Common Shoulder Diagnoses

- Rotator Cuff / Impingement
- Frozen Shoulder
- Glenohumeral Instability
- Other

<table>
<thead>
<tr>
<th>Key Positive:</th>
<th>Key Positive:</th>
<th>Key Positive:</th>
<th>Key Positive:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impingement signs</td>
<td>Spontaneous progressive pain</td>
<td>Age usu > 40</td>
<td>GH Arthritis</td>
</tr>
<tr>
<td>Painful arc</td>
<td>Loss of motion in multiple planes</td>
<td>Hx disloc / sublux</td>
<td>Fractures</td>
</tr>
<tr>
<td>Pain w/ isom resist</td>
<td>Pain at end-range</td>
<td>Apprehension</td>
<td>AC j</td>
</tr>
<tr>
<td>Weakness</td>
<td>Normal motion</td>
<td>Generalized laxity</td>
<td>Neural Entrap</td>
</tr>
<tr>
<td>Hypothesis</td>
<td>Age < 40</td>
<td>No apprehension</td>
<td>Myofascial</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key negative:</th>
<th>Key negative:</th>
<th>Key negative:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sig loss of motion</td>
<td>Normal motion</td>
<td>No drg dislocation</td>
</tr>
<tr>
<td>Instability signs</td>
<td>Age < 40</td>
<td>No apprehension</td>
</tr>
<tr>
<td>Normal motion</td>
<td>No pain</td>
<td>Post-Op</td>
</tr>
<tr>
<td>No drg dislocation</td>
<td>No pain</td>
<td>Red Flag Conditions</td>
</tr>
</tbody>
</table>
Scapular Dysfunction is an Impairment

- Is it related to common shoulder pathologies?
 - Maybe
 - Subacromial Impingement
 - Abnormal motion leads to decrease in subacromial space => impingement/tendinopathy
 - Abnormal motion results in overuse of rot cuff => impingement/tendinopathy
 - Rot cuff may be the “victim” but scap dysfunction may be “culprit”

Scapula Dysfunction

- Is it related to common shoulder pathologies? *Maybe*
 - Frozen Shoulder
 - Compensatory early/excessive scapular motion has been identified
 - May be difficult to “unlearn”
 - SLAP / GH Instability
 - Unstable or malpositioned scapula may lead to over stress of labrum and GH capsular structures, especially overhead sports
 - How can we determine if scapula dysfunction is related to symptoms?
 - SYMPTOM ALTERATION TESTS

The Scapula

- Functional Role
 - Base for UE function
 - Mobility Requirement for proper positioning:
 - maintain length-tension relationship for GH muscles
 - maintain GH stability during UE task by “following the humerus”
 - Stability Requirement:
 - base for force generation through UE

The Scapula Normal Motion

- Is it as simple as 2:1?

Direct Three-Dimensional Measurement of Scapular Kinematics.

- Subjects
 - Eight healthy volunteers
 - One patient with impingement syndrome
- Protocol/Data Analysis
 - 2 bone pins inserted directly into scapula
 - Mount sensors and set up coordinate systems
Description of Motion

Upward Rot Posterior tilt External Rot Clav Retract Clav Elev

Scapular Plane Elevation: Scap Upward Rot

Mean = 50°

Scapular Plane Elevation: Scap Posterior Tilting

Mean = 30°
Scapular Plane Elevation: **Clavicular Elevation**

- Mean = 10°

![Graph of Clavicular Elevation](image)

Scapular Plane Elevation: **Scap Ext Rot**

- Mean = 24.0°

![Graph of Scapular External Rotation](image)

Scapular Plane Elevation: **Clavicular Retraction**

- Mean = 21°

![Graph of Clavicular Retraction](image)

Shoulder Girdle Motion

- Four Articulations
 - Glenohumeral
 - Scapulothoracic
 - Acromioclavicular
 - Sternoclavicular

![Diagram of Shoulder Girdle Motion](image)
Assessment of Scapular Dysfunction

- Visual Classification: Scapula Dyskinesis Test
- Symptom Altering Tests: SRT, SAT
- Force Measures
 - Trap
 - Serratus
- Related Areas
 - Pec Minor
 - Posterior Capsule
 - Thoracic spine

Classifying scapular motion: the scapula dyskinesis test (SDT)
(McClure et al. JAT, 2009 Tate et al, JAT, 2009)

- 5 repetitions:
 - Flexion (weighted)
 - Abduction (weighted)
- Rate scapular motion on each test as:
 - Normal (N) motion: no evidence of abnormality
 - Medial border and inferior angle relatively flat
 - Subtle (S) dyskinesis: mild/questionable evidence of abnormality, not consistently present
 - Obvious (O) dyskinesis: striking, clearly apparent abnormalities, evident on at least 3/5 trials
 - Winging 1” or greater displacement of scapula from thorax
 - Dysrhythmia

Dyskinesis: Dysrhythmia

- Describes a lack of “smooth” scapulohumeral rhythm
 - A “hitch or a jump in the otherwise smooth motion.” (Kibler, 2003)
 - Most common pattern is early/excessive scapular elevation (shrug)
 - Another common pattern: rapid downward rotation during lowering (dump)

Dyskinesis: Winging

- Movement of medial border and/or inferior angle away from the thorax, becoming more prominent during arm motion with a sulcus/gap between the scapula and the thorax:
 - ≥1” is considered abnormal
 - May be unilateral or bilateral

Scapula Dyskinesis Test

- 5 repetitions
 - Flexion
 - Abduction
- Weight (if able)
 - 50 if>150 lbs or >
 - 30 if <150 lbs
- Look for
 - Winging (1” or >)
 - Dysrhythmia
- Grade
 - Normal
 - Subtle
 - Obvious
Symptom Altering Tests

- **Modified Scapular Assistance Test**
 - Posteriorly tilt and upwardly rotate scapula (Rabin et al, 2006)

- **Scapula Retraction Test**
 - Evaluation of supraspinatus strength in patients with shoulder injury using the SRT (Kibler, 2006)

- **Scapula Reposition Test**
 - Tate, McClure et al, JOSPT, 2008

Methods: Effect of SRT on Pain

- **Physical exam by ATC**
 - Impingement tests
 - Hawkins
 - Neer
 - Jobe
 - Symptomatic impingement tests with SRT
 - Numeric Pain Rating (0-10)

Procedure: Effect of SRT on Isometric Elevation Strength using Dynamometer

- Three submax practice trials
- Three 5-second max trials
 - 1 min b/w reps
- Positions
 - Natural
 - SRT
 - 2 min rest
 - (order randomized)

Results: Pain provocation and strength

- Pain with impingement test
 - 1 positive impingement test in 98/142 athletes
 - With SRT 46/98 athletes had 1pt or more ↓ in pain

- Strength
 - 26-29% significant increase in strength

- Relevance of SRT
 - identify those in whom scapular interventions are indicated

Purpose

- **SRT**
 - Reduce pain?
 - Increase elevation force?
- **Overhead athletes (N=142)**
 - Symptomatic
 - Asymptomatic
Results: Pain Reduction
- 98/142 athletes “+” impingement tests
- SRT: 46/98 ↓ in pain

Results: Strength
- 26-29% increase in strength
- Strength gains were not associated with reduction in pain

Relevance of SRT
- Identify those in whom scapular interventions are indicated

To Perform SRT: Jobe empty can test
- Arm abducted in scapular plane with humerus internally rotated with thumb pointing inferiorly
- Apply resistance just proximal to patient’s wrist
- Document elevation strength and presence of pain (NRS 0-10)

Modified Scapula Assistance Test (Rabin et al, 2006)
- Pain rating during scaption or sagittal plane elevation /10
- Stabilize the upper scapular border into mild retraction
- Heal of other hand over inferior angle with fingers wrapped around thorax to assist upward rotation during elevation
- Pain rating __/10

Possible Causes for Scapular “Mis-position”
- Muscle weakness
 - Serratus anterior
 - Lower/middle traps
- Soft tissue/Muscle tightness
 - Posterior capsule/cuff
 - Pectoralis minor
- Thoracic spine/Posture

Jobe with scapula reposition test (Tate et al, 2008)
- Grasp scapula medial to the lateral aspect of acromion with fingers on clavicle/ACj
 - Forearm is obliquely angled toward inferior angle for additional support
- Apply moderate posterior tilting and external rotation force
- Passively elevate arm and repeat Jobe test
- Document pain (NRS 0-10)

Serratus Muscle Test
- Highest ms activity: Flexion or scapular plane elevation and resist shoulder elevation
- Resisting protraction: does not elicit as much as SA emg activity
Strength: Serratus anterior
- Patient seated, no back support
- Arm flexed to 125°
- Apply downward resistance just proximal to patient’s elbow
- Monitor inferior angle of scapula and grade based on ability of serratus to hold upward rotation

Normal strength
Reduced strength

Strength: Middle Trapezius
- Prone
- Horizontal abduction with thumb pointed superiorly
- Apply downward resistance just proximal to patient’s elbow
- Stabilize thorax
- Monitor medial border of scapula, grade on ability to maintain retraction

Normal strength
Reduced strength

Strength: Lower Trapezius
- Prone
- Arm elevated overhead in line with lower trapezius
- Apply downward resistance just proximal to patient’s elbow
- Stabilize thorax
- Monitor medial border of scapula, grade on ability to maintain retraction

Normal strength
Reduced strength

Forward shoulders/protracted scapulae
- Are they a problem?
 - Solem-Bertoft
 - anterior opening of subacromial space narrowed with protracted vs retracted position
- Reduced pec minor length
 - Solom-Bertoft
- Reduced posterior tipping at 90, 120 elevation
- Reduced external rotation during abduction 30, 60, 90 deg
- Significance: reduce the subacromial space

Normal strength
Reduced strength

Pectoralis Minor length
- Normal: posterior acromial heights = bilaterally or involved side is lower
- Reduced: acromion is significantly higher (>1cm) on involved side
- Measure and palpate lower ribs for elevation during passive shoulder flexion

Normal strength
Reduced resting pec minor length on right

Shoulder ROM, Posterior Capsule Length
Posterior Capsule (Harryman, 1990)
- Increased posterior shoulder tightness
- HH sup translation & decreased GH IR AROM
- Decreased subacromial space
- Mechanical compression of SA tissues

A
B

Reduced pec minor length on right

Reduced resting pec minor length on right
Posterior Capsule tightness

- Superior migration of humerus with posterior capsule tightness (Harryman, 1990)
- Loss of internal rotation (GIRD)
- May cause scapula to protract excessively during follow-through (add/IR)
 - Throwing

AROM: Internal Rotation behind back
(Hoving 2002, Green 1998)

- Standing
- Ask patient to "reach behind your back as high as you can"
- Hand should stay flush against back with thumb pointing superior
- Record position of thumb
- Landmarks:
 - PSIS = S2
 - Iliac crest = L4-L5
 - Inferior angle of scapula = T7
 - Spine of scapula = T4

Posterior Shoulder Tightness:
What do we measure?

- PROM: Internal Rotation 90° abduction
- Horizontal adduction

PROM: Horizontal adduction
(Myers, AJSM 2007)

- Supine "squeeze shoulder blades together"
- PT stabilizes scapula into maximal retraction using thenar eminance against lateral scapular border
- Passively horizontally adduct humerus to end range
- Rate
 - Restricted = adduction less than sagittal plane (90°)
 - Normal = adduction beyond sagittal plane (90°)
 - Typical measure is 95°

Practice

- SDT (Scap Dyskinesis Test)
 - Flex +/- wt
 - Abd +/- wt
- SRT (Scap Reposition Test)
 - Empty can w/o scap stabilization
 - ? Pain reduced
 - ? Obvious strength increase
- SAT (Scap Assist Test)
 - Use if elevation is painful
 - Assist scap upward rot during painful elevation movement

Strength Assessment
- Mid trap
- Low trap
- Serr Ant

Post Capsule Tightness
- IR at 90 degrees
- Horiz Adduction with scap blocked
- Pec minor tight?
 - Coracoid ht supine, palpate ribs during arm elevation
Interventions

Stretch if tight
- Scapula mobilizations
- Pectoralis minor
- Posterior capsule/cuff

Reeducate/strengthen if reduced muscle performance

Other
- Tape
- Brace
- NMES

ST inferior glide

- **Patient Position:** side-lying with upper limb draped over the tester’s arm
- **Tester Position:** one hand across the acromion to guide motion and the other around the inferior angle of the scapula.
- **Description:** The scapula is moved in the inferior direction by pushing the acromion and lifting the inferior angle.

ST protraction

- **Patient Position:** side-lying with upper limb draped over the tester’s arm
- **Tester Position:** one hand across the acromion to guide motion and the other around the inferior angle of the scapula.
- **Description:** The scapula is moved into protraction by pushing the acromion and lifting the inferior angle.

ST retraction

- **Patient Position:** side-lying with upper limb draped over the tester’s arm
- **Tester Position:** one hand across the acromion to guide motion and the other around the inferior angle of the scapula.
- **Description:** The scapula is moved into retraction by pushing the acromion and lifting the inferior angle.

Scapulo thoracic superior glide

- **Patient Position:** side-lying with upper limb draped over the tester’s arm
- **Tester Position:** one hand across the acromion to guide motion and the other around the inferior angle of the scapula.
- **Description:** The scapula is moved in the superior direction by pushing the acromion and lifting the inferior angle.
ST distraction

- **Patient Position:** side lying with upper limb draped over tester’s arm.
- **Tester Position:** One hand is over the acromion and the other is either stabilizing the inferior border of the scapula or the fingers are at the medial border.
- **Description:** The scapula is moved over the stabilizing hand or the fingers are worked under the scapula while pushing on the acromion to lift the scapula off the thorax.

Posterior Capsule/Cuff Stretching

- **Manual Techniques**
 - Supine
 - Prone

Pectoralis Minor Stretching

Posterior Capsule Mobilizations

- **Posterior glide**
- **Posterior glide in 90 degrees flexion**

Posterior Capsule/Cuff Stretching

- **Patient Generated**
 - Cross-body
 - Sleeper

Surface EMG analysis of Ex for trapezius and serratus anterior (Ekstrom, 2004)

- **N=30 healthy subjects**
- **Which exercises elicit greatest emg?**
 - Middle trap: overhead arm raise in line w/ trap & horizontal ext w/ ER ("T" and "Y")
 - Lower trap: overhead arm raise in line w/ trap
 - Alternate: prone ER w/ 90 abd
 - Serratus anterior: scaption > 120 & combined flexion, horiz. flexion and ER
Relative Balance of Serratus Anterior and Upper Trapezius Muscle Activity During Push-up Exercises
Muscle Activity During Push-up Exercises

Scapular Exercise: EARLY PHASE

Scapular Exercise: MIDDLE PHASE

Flexion, horizontal flexion, external rotation
Based on Ekstrom 2003
Scapular Exercise: LATE PHASE

Scapular Exercise Principles
- Quality vs Quantity
 - GH range limited to where scap control is achieved and maintained
- CKC or OKC?
- Trunk motion to facilitate scap motion
- Multiple planes (safer => more challenging)
- Taping/bracing

NMES for strengthening
- Increase peak force production of shoulder musculature with NMES (Reinold et al., AJSM, 2008)
- Cortical activation change induced by neuromuscular electrical stimulation: increase efficiency of cerebral cortex during execution of motor tasks (Jang SH, et al., Journal of NeuroEngineering and Rehabilitation, 2014)

Parameters for strengthening
- **Phase Duration**: 200-600ms (usually use 400-500 ms)
- **Pulse Frequency**: 50pps to 90pps
- **Duty Cycle**: 1 to 5 (10 seconds on and 50 seconds off)

Protocol for Subacromial Impingement (Tate et al, JOSPT, 2010)
- Use NMES bilat mid trap with resisted retraction
- Bilat mvmts increase cortical excitability and maximize potential for strengthening corticospinal papathways (Baldwin et al, Physiotherapy Canada, 2012)
- Use NMES on unilat mid/low trap and serratus anterior using toggle during arm elevation/lowering
Treatment Summary & Practice

- **Stretching**
 - Post capsule/cuff
 - Pec minor
 - Post GH mobs

- **Strengthening**
 - Motor control vs strength
 - SA, LT +/- NMES
 - Core and whole body patterns
 - Cuff strengthening also effects scapula

- **Taping / Bracing**
 - Adjunct to facilitate pain-free exercise

Thank you

Angela Tate PT, PhD
Willow Grove Physical Therapy
Adjunct Faculty, Arcadia University
tatea@arcadia.edu

Brian Eckenrode, PT, DPT, OCS
Assistant Professor, Arcadia University
eckenrodeb@arcadia.edu