Management of High Energy Carpal Instability

Jeffrey A Greenberg, MD, MS
Indiana Hand to Shoulder Center
Indianapolis, Indiana

Disclosures
• Stryker: Consultant and Speaker
• Acumed: Consultant and Speaker
• Axogen: Speaker and stock ownership

High Energy Carpal Instability

• KB
 • 35 yo laborer
 • Fall from a height
 • Significant wrist injury
 • Consulted for treatment

High Energy Carpal Instability

• Uncommon: 7% of carpal trauma
• Frequently delayed diagnosis
 • Early>late Rx
• Patterns
 • Variable
 • Multiple combinations
 • Bone/Soft Tissue
• Understanding Restoration of Anatomy is Essential in Treatment

High Energy Carpal Instability

• Anatomy
• Historical Considerations
• Biomechanics/Pathomechanics
• Patient Considerations
• Elements of Acute Treatment
• Results
• Complications and Salvage
Epidemiology and Patterns of Perilunate Fracture-Dislocations over a 17 Year Period
Leung, Egleseder, Abzug; JHS, Sept 2014

- 140 pts, 17 years
- Middle aged men, high energy injury
- Distribution
 - 42 TSPL
 - 43 PL
 - 46 additional fractures
- Results
 - Nearly 50% scaphoid
 - 22 fracture patterns
 - 3% open fractures
 - 15% median nerve symptoms

High Energy Carpal Instability

- 1855 Malgaigne (pre x-ray)
- 1897 Destot and Cousin
- 1902 deQuervain
- 1906 Tavernia in Lyon France
 - First clinical series

High Energy Carpal Instability

- Difficult to Study
 - Small series
 - Retrospective
 - Varying patterns/treatments
- Multi-center Experience JHS 1993
 - 166 pts
 - 7 centers

Perilunate Dislocations and Fracture-Dislocations: A Multicenter Study
G. Heidbrink, MD; J. C. Cailliet, MD; Lyon, France; R. L. Lieberfeld, MD; P. C. Amendt, MD; W. P. Quiner, MD; Bucyrus, Pennsylvania; J. Tabib, MD, Luzerne, Switzerland

Etiology

- Hyperextension Injuries
- High velocity, high energy
- Fall from heights
- Vehicular injuries
- Air bag deployment

Patterns of PLD/PLFD

- Hyperextension
- Palmar Tension
- Dorsal Compression

- Patterns of Injury are produced depending upon
 - Force
 - Position
 - Bone quality
 - Ligament loading
Patterns of PLD/PLFD

Patterns of PLD/PLFD

Patterns of PLD/PLFD

Patterns of PLD/PLFD

Carpal dislocations: Pathomechanics and progressive perilunar instability
J Hand Surg, 1980
Jack K. Mayfield, M.D., Minneapolis, Minn., Roger P. Johnson, M.D., and Raphael K. Kilcoyne, M.D., Milwaukee, Wis.

Progressive Perilunar Instability

- Extension, Ulnar Deviation, Intercarpal Supination
- Stage 1: SL Dissociation
- Stage 2: Scaphoid and capitae
- Stage 3: Dorsal perilunate
- Stage 4: Lunate Dislocation
Stabilizing Ligaments

- **I**
 - SLD Radial Extrinsic SLIL

- **II**
 - Scaphoid and Capitate through space of Poirier
 - Radial ExtrinsicSLILRLT

- **III a**
 - Propagation ulnary
 - LT lig Avulsion fxs

- **IV**
 - Progressive Reduction Instability

- **V**
 - Greater Arc
 - Lesser Arc
 - Inferior Arc
Classification

Variety of Patterns
- Not Mutually Exclusive
 - Scaphoid fracture
 - SL ligament tear
 - DR fractures
 - Volar Patterns
 - Ulnar Patterns
 - Murray, Palmer, Shin
 - JHB, April 2012

Patient Presentation
- History
 - Clinical signs may be minimal
 - Deformity
 - Diffuse wrist tenderness
 - Limited ROM
 - Limited digital ROM
 - Neurologic Exam Critical
Wrist Fracture Dislocation

Factors in Treatment

- Restoration of Anatomy is KEY
- Apposition and De-tensioning to allow soft tissue healing
- Stable fixation to allow bony healing

Arthroscopic Management

- 20 patients, PLD and PLFD
- Arthroscopic Reduction and Perc Pinning
- 79% E/F ROM
- 78% Grip strength
- Reduction maintained in 75%
- 3E, 8G, 7F, 2P

Arthroscopic Management

- 31/40 patients with >1 year FU
- “Shoehorn” maneuver for reduction
- Screw fixation for PLFD
- Percutaneous Pinings
- SL anchor assisted repairs
Arthroscopic Management

Arthroscopic Mgt of Perilunate Injuries
Liu et al., Hand Clinics, 2017

- E/F 115° (86% contralateral)
- Grip 83% contralateral
- Mayo wrist scores 87
- DASH 7
- 31/31 RTW (15 manual labor)
- Operative time 90-300 minutes!!

Treatment

- Anatomy-Restoration and Stabilization
- Open Treatment

Open PLD

Surgical Approach

Large rent in extensor retinaculum
Scaphoid Fractures
- Waist Fxs
- Most transverse
- Beware!!

Outcomes
- Mayo Clinic Series, 2011
 - 57 Patients (94 total cohort)
 - 30 perilunate, 64 fx-dislocations
 - 5 open
 - Varied approaches, most combined
 - Results
 - Grip strength similar
 - ROM favored fracture group
 - 1/3 additional procedures
 - 25% good to excellent
 - X-ray changes (35% soft tissue, 52% fx)

Outcomes
- 45 patients, 46 injuries
- Combined approach for all pts
 - SL repairs, Scaphoid ORIF, LT pinning
- Pathologic findings
 - Volar ligament rent: 100%
 - Dorsal avulsion 65%
 - SL tears in 35%

Outcomes
- Flexion/Extension: 82°
- Grip Strength: 59%
- Radiographically better for Fx group

Outcomes
- Results of Perilunate Dislocations and Perilunate Fracture Dislocations With a Minimum 15-Year Follow-Up
- Krief et al., JHS, Nov 2015
 - 73 patients (data on 30)
 - 15 year Follow-up
 - 14 PL, 16 PLFD
 - Variety of Treatments

Outcomes
- Results of Perilunate Dislocations and Perilunate Fracture Dislocations With a Minimum 15-Year Follow-Up
- Krief et al., JHS, Nov 2015
 - Distribution of the Various Treatments According to the Injuries
 - PLD
 - TIP/LFD
 - PLFD
 - Closed reduction and cast immobilization
 - Closed reduction and percutaneous pinning
 - Open repair via volar approach
 - Open repair via dorsal approach
 - Open repair via volar and dorsal approach
Outcomes

Results of Perilunate Dislocations and Perilunate Fracture Dislocations With a Minimum 15-Year Follow-Up

Krief et al., JHS, Nov 2015

- ROM: 68%
- Grip 70%
- Mayo WS: 70
- OA in 70%

Outcomes

Perilunate Dislocations and Transscaphoid Perilunate Fracture–Dislocations: A Retrospective Study With Minimum Ten-Year Follow-Up

Forli et al., JHS, 2010

- 18 of 54 patients
- PLD 11, PLFD 7
- Variety of Treatments
- Variety of Times between Dx and Rx

Outcomes

Perilunate Dislocations and Transscaphoid Perilunate Fracture–Dislocations: A Retrospective Study With Minimum Ten-Year Follow-Up

Forli et al., JHS, 2010

Late Treatment

- Case from ASSH Listserve
 - 42 yo athletic trainer
 - MCA June 2017
 - Mis-diagnosed in ER
 - Coincides with Clinical Epidemiology
 - Pain, limited ROM and MN symptoms

Outcomes

Clinical and radiological Assessment of PLD and PLFD Separately

<table>
<thead>
<tr>
<th>Pathology</th>
<th>Average Score</th>
<th>Flexion- Extension</th>
<th>Grip Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLD</td>
<td>7</td>
<td>74</td>
<td>63</td>
</tr>
<tr>
<td>PLFD</td>
<td>11</td>
<td>77</td>
<td>76</td>
</tr>
<tr>
<td>PLD and PLFD</td>
<td>18</td>
<td>75</td>
<td>88</td>
</tr>
</tbody>
</table>

Late Treatment

- Case from ASSH Listserve
 - 42 yo athletic trainer
 - MCA June 2017
 - Mis-diagnosed in ER
 - Coincides with Clinical Epidemiology
 - Pain, limited ROM and MN symptoms
Late Treatment

- Options:
 - Closed Treatment not possible
 - Open Treatment
 - Salvage Procedures
 - PRC
 - LICF

- Raskin 1999
 - All PRC
 - Assoc Volar approach

- Naam 2010
 - Case specific Rx

Late Treatment

- Individualized
 - Reducible
 - Open Reduction and Fixation
 - Ligament Augmentations
 - RASL
 - Irreducible
 - PRC
 - Cartilage Damage
 - LICF

Complications

- Infection
 - Pin tracts
- Stiffness
- Late Carpal Collapse
- Arthritis
- AVN (?)

Complications

- Patient Issues
 - Dissatisfaction
 - Altered Functional abilities
 - Work issues
Future Directions

- Unanswered Questions
 - Uncommon Injury
 - Frequently Mis- or under-diagnosed
 - Variable Presentations
 - Variable Treatments

Future Directions

- Unanswered Questions
 - Evaluation
 - Pre-op cartilage assessment
 - Arthroscopic management
 - Timing of Treatment
 - Approaches
 - Ligament Augmentation vs Repair
 - What should be stabilized
 - How long to immobilize

Future Directions

- Hand Surgery Consortium
- Collaboration
- Randomized, Prospective Trials