Optimizing Sensorimotor Control After Peripheral Nerve Injury

Susan V Duff, EdD, PT, OTR/L, CHT

I. Skilled Prehension
 A. Features
 B. Motor Control Concepts 1-4
 1. Managing redundancy
 2. Role of sensory information in anticipatory and feedback control
 3. Motor lateralization / handedness
 4. Minimizing cost / optimization

II. Neural Changes after PNI 5,6
 A. Peripheral and Central
 1. Wallerian degeneration 7
 2. Neural representation 8-10
 3. Alterations in sensorimotor control 2,11-16
 a. Degrees of freedom altered
 b. Influences on manipulative skill
 B. Physiologic recovery 17,18
 1. Microsurgery
 2. Essential ingredients for axon regeneration
 3. Common problems

III. Assessment 2,3,11-13,19-23
 A. Impairments
 B. Motor strategies
 1. Adaptability
 2. Consistency
 3. Efficiency
 C. Function / Participation

IV. Intervention: expanding boundaries of recovery
 A. Enhancing resources
 1. Electrical stimulation to augment regeneration 24
 a. Animal model
 i. Implanted daily e-stim elevates intramuscular mRNA 25
 ii. One-hour e-stim at time of nerve repair promotes axon regeneration 26,27
 b. Human model
 i. Brief e-stim after carpal tunnel release surgery 28
 ii. Augment sensory nerve regeneration/functional recovery 29
 c. Implementation
 B. Activity-based treatment / Exercise 7, 33, 37
 1. Sensory discrimination training 35
 2. Contingent reinforcement 36
 3. Combination paradigms 37
 C. Maximizing function

V. Summary
References

